an greedy customers be good citizens?

Coordinated distributed energy resource optimization via power flow simulation.
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Power distribution feeders are the building blocks of the future smart grid. Four facilities were considered in this study, representing a cross-section
Eventually, it is possible that feeders will morph into microgrids. of buildings with associated DERs: a university building with solar-thermal-
Distributed energy resources located on a specific feeder should act in a assisted HVAC, hot and cold TES, based on the Mechanical Engineering
coordinated way, to ensure that the overall system functions in an efficient building at UNM; an office complex with a large PV array and sensible cold
and economical way, without disruptions in power quality driven by collective TES, based on the One Sun Plaza complex in Albuquerque; movie studios with
action of individual optimizations. The problem is how to encourage owners of large electric chillers and an array of ice storage tanks; a commercial
DERs to operate their facilities in a grid-friendly way, without affecting building served by a microgrid, based on the Apertucre Center at Mesa del
the economics in a significant way. Sol.
To optimize the operation of individual DERs, Berkeley Lab's Distributed For the purposes of this study, these facilities, ranging in peak load from
Energy Resource - Customer Adoption Model (DER-CAM) cloud-based system 1is an 120 kW to approximtely 0.5 MW, were located virtually on the Studio 14
attractive option. However, the customer-centric optimization should be feeder at Mesa del Sol. Studio 14 has a nominal operating capacity of 5 MW,
tempered by information derived from the power flow on the feeder. and also hosts a 0.5 MW distribution-level PV array with 1 MWh battery
storage.
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Aperture Center: microgrid with PV, battery, data, DER-CAM was used to produce optimized schedules for each facility.
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The Studio 14 power distribution feeder, located at Mesa del Sol, a planned
communty in Albuquerque, New Mexico (USA), currenly hosts several facilities
with advanced DERs, including a solar PV array with battery storage, a
commercial building served by a microgrid, and movie studios with large ice
storage. It is almost certain that, as the Mesa del Sol community grows, :
there will be an increasing number of facilities with advanced DERs
connected to the Studio 14 feeder. Moreover, it is also likely that each of
these facilities will take advantage of cloud services for minimizing
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investigate the implications of such a situation.

The Studio 14 feeder was modeled in detail using OpenDSS, a
distribution system simulator developed by the Electric Power
Research Institute. The four schedulable facilities were
connected electrically to the Studio 14 feeder, in addition to
a background load obtained from data provided by the utility.
The outputs of the simulation include voltage, current, power,
phase at any location on the feeder. Voltage at one of the
nodes was used here as an indicator of power quality.
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The VOltage hiStOI‘Y at the One Sun Background Utility conumption TOU Office Voltage
Plaza facility shows the effect of local = 0.968
vs. background loads. Drops in voltage 0.962
are observed when the large chillers are
activated to charge the cold TES. In
standalone optimization, this occurs just
before the onset of the "on peak" tariff,
to minimize storage losses. Voltage drops

To prevent undesirable collective consequences on the feeder
resulting from the individual optimizations, a cost can be associated
with certain power flow variables predicted by the OpenDSS
simulation. This represents a "local distribution cost" that can be
added to the original electricity tariff. This way, excess loads or
voltage drops originating from, say, simultaneous activation of
energy storage devices at the onset of the "off-peak" part of the
tariff can be corrected during a second or further iteration of the
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distribution feeder in the optimization process, via a pseudo-
real-time price, at low computational overhead.
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